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A higher-order bending theory is derived for laminated composite and sandwich beams thus extending the recent

{l,2}-order theory to include third-order axial effects without introducing additional kinematic variables. The

present theory is of order {3,2 } and includes both transverse shear and transverse normal deformations. A closed-
torm solution to the cylindrical bending problem is derived and compared with the corresponding exact elasticity

solution. The numerical comparisons are focused on the most challenging material systems and beam aspect ratios

which include moderate-to-thick unsymmetric composite and sandwich laminates. Advantages and limitations of

the theory are discussed. © 1998 Published by Elsevier Science Ltd. All rights reserved

INTRODUCTION

Higher performance and lower cost requirements for the

next generation of aerospace vehicles often necessitate the

use of advanced polymer-matrix composite materials.

Composite materials can be tailored into highly efficient

structures that combine high stiffness and strength, light

weight, and improved fatigue and thermal performance.

From the design perspective, accurate strain and stress

predictions are required to avoid higher factors of safety that

inevitably lead to an over design, reduced performance, and

higher cost.

The structural modeling of composite and sandwich

laminates with the use of approximate beam, plate, and shell

theories is known to be the most efficient. Many significant

developments in this area can be found, for example, in

review papers by Reissner I, Reddy 2, and Noor and Burton 3,

Numerous finite elements used in commercial and research

codes have also been developed for composite structures.

The most commonly used finite element models are those

based on the first-order shear-deformation theory. The

following brief discussion reviews the most pertinent

aspects of composite beam theories, and also makes

comparisons to similar plate and shell theories.

The classical Bernoulli-Euler beam theory, neglecting

transverse shear and transverse normal detbrmations, is

appropriate for thin, homogeneous beams and is known to

be inadequate for composite and relatively thick beams.

Timoshenko beam theory includes transverse shear defor-

mation and provides more accurate response predictions for

thin and moderately thick homogeneous beams. Reissner 4

* Corresponding author.

stress-based and Mindlin 5 displacement-based first-order

shear-detbrmation plate theories were originally developed

for the analysis of homogeneous elastic plates. Many

subsequent shear-deformation theories, utilizing the

displacement-based approximation approach, focused on

the analysis of laminated composites, e.g. refer to Stavsky 6,

Yang et al. 7, Whitney and Pagano s. Such theories,

commonly referred to as single-layer theories, treat a

laminate as an equivalent single layer, with the displace-

ment assumption representing a weighted-average distri-

bution through the thickness.

Reddy and Liu '_ formulated a layer-wise theory which

assumes piece-wise smooth displacement components

through the thickness, i.e., while the displacement function

is continuous through the thickness, the slope of the function

at the ply interfaces may not be continuous. This type of

theory produces a large number of unknowns and is

computationally expensive, especially when a laminate

consists of many layers which is usually the case in load-

carrying structures.

Higher-order theories, which account for transverse shear

and transverse normal stresses, generally provide a reason-

able compromise between accuracy and simplicity; how-

ever, they are usually associated with higher-order boundary

conditions that are difficult to interpret in practical

engineering applications, e.g., refer to Essenburg m,

Whitney and Sun II, Lo et al. _2, Reddy 13, and Phan and

Reddy 14

Recently, Tessler and coworkers 15 _'_ developed a

higher-order theory for application to laminate composite

beam, plate, and shell analyses. The theory maintains the

simplicity and computational advantages of the first-order

shear-deformation theory. It accounts for transverse shear
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and transverse normal detbrmations by assuming a special

form of the {1,2}-order displacement assumption (The

notation {ram} implies that the axial displacement is

expanded with a polynomial of degree, m, whereas the

transverse displacement may be of a different degree, n.)

Additionally, the average shear strains are assumed to be

parabolic, thus satisfying zero shear tractions on the top/
bottom surfaces; and an average transverse normal strain is

assumed in the form of a cubic polynomial satisfying one of

the equilibrium equations of elasticity theory exactly. The

approach requires that the transverse strains need only be

least-squares compatible, through the laminate thickness,
with the strains derived from strain-displacement relations.

The resulting thickness distributions for the transverse

stresses and strains produce adequate correlation with

results given by elasticity theory, an improvement over

previous higher-order theories. Tessler I_' improved the

theory further for application to composites by introducing

an independent polynomial assumption for the transverse

normal stress to replace the cubic transverse normal strain
assumption. The improved theory results in a more accurate

representation of transverse normal stresses and strains, and

is further substantiated by solutions given by Schleicher 2°.

The {I,2} theory retains the simplicity of the first-order

shear deformation theory in so far as the engineering

boundary conditions are concerned. Furthermore, the

theory gives rise to finite element formulations that are

fully compatible with the first-order shear detormation
elements.

Application of the {1,2} theory generally results in

excellent predictions for thin and moderately thick homo-

geneous and laminated composites. Nevertheless, the theory

has some limitations, particularly with respect to the
modeling of relatively thick sandwich laminates. This is

because in such laminates the distribution of the inplane

displacement and strain can be highly non-linear. In thick

laminates, this generally results in underestimation of the

axial stress, typically the largest stress that governs the

design of the structure. Another deficiency, which is only
manifested in sandwich laminates, is the violation of the

traction conditions on the top and bottom surfaces
associated with the transverse normal stress.

In a recent NASA publication, Cook 2t explored a {3,2 }-

order )eam theory which expands upon Tessler's {1,2}

theory by including cubic axial effects. A special hier-

archic_ 1 lbrm for the axial displacement is developed such
that th,_ theory employs the same five kinematic variables

as its {1,2}-order counterpart, without introducing any
additicnal kinematic variables. The hierarchical form of the

displacement field ensures the exact fulfillment of traction-

free saear stress boundary conditions and permits a

straighttbrward reduction to several lower-order beam
theories. As in Tessler j6, in addition to the assumed

displacements, an independent polynomial expansion is

emplo:'ed for the transverse normal stress. The concepts of
transw rse shear and transverse normal correction factors

are eflL'ctively incorporated using strain energy and traction

equililzrium considerations. The theory enables more

accura e predictions for the axial, transverse shear, and

transw rse normal stresses and strains, particularly for thick
laminated composite and sandwich beams. Accurate piece-

wise s'nooth transverse shear stresses are determined by

integrating two-dimensional equilibrium equation of elas-

ticity theory. Cook 21 also developed a straightforward

correction procedure that improves the accuracy of this

approach for unsymmetric and sandwich laminates.

In this paper, the theoretical foundation and predictive

characteristics of the {3,2}-order theory are closely
examined. The theory, which begins with an assumed

{3,2}-,)rder displacement field and assumed cubic trans-

verse r ormal stress, employs the virtual work principle from

which the beam equilibrium equations and associated

bound: zy conditions are derived. These field equations are

solved in closed form for the problem of cylindrical bending
of laminated composite and sandwich beams. Appropriate
transw rse shear and transverse normal correction factors are

employed. Numerical results are presented for moderately

thick aad truly thick beams, and comparisons are made to the

{ 1,2 }-. _rder theory and three-dimensional elasticity solutions.

{3,2 }- )RDER BEAM THEORY

Consk era straight, linearly elastic beam laminated with N

ZPU Z

-.-.=_X I U

Z

Figure l Beam notation
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orthotropic plies subject to the loading shown in Figure 1.
The beam has a span L and a rectangular cross-section

thickness of 2h and width b. The orthotropic plies are

stacked from the bottom (z = -h) such that the material

properties, in general, are functions of the z coordinate. The
tractions q+ and q are applied normal to the top and bottom

faces of the beam. Tio and TiL (i = x,z) are tractions

prescribed at the ends of the beam.

Displacement assumptions

From the viewpoint of exact elasticity theory, the

displacement components are piece-wise smooth and, in

thick laminated composite and sandwich beams, they are
non-linear through the thickness. This contrasts with the

predominantly linear displacement distributions for thin

beams. To represent both linear and non-linear deformation

effects within the realm of a relatively simple, single-layer

structural theory, the axial and transverse displacement

components u, and u- are assumed to vary through the

thickness as the cubic and quadratic polynomials

3

uAx,=) = _ ui(x)_ "i, u:(x,z) = w(x) + wl(x)_
i=o (I)

+ w2(x)(_-2 + C)

where _" = zJh C [ - 1,11 is a dimensionless thickness

coordinate such that ¢ -- 0 defines the midplane of the

beam. The four ui coefficients in the axial displacement
expression are yet to be defined, the wi coefficients in the

transverse displacement represent the same kinematic vari-

ables as those defined by Tessler iS. The constant C is

included in the transverse displacement equation to allow

w(x) to represent a weighted-average transverse displace-
ment yet to be defined.

Three weighted-average kinematic variables are defined,
as in Reissner 4, such that

if,u(x) = _ _ hux(x, z) dz, O(x) = _ _ ff,,.(x, z)z dz,

W(X)=3Ihhuz(x,z)(l--r2)dz (2)

where u(x) is the midplane displacement along the x axis,

O(x) is the rotation of the normal about the y axis, and w(x) is

the weighted-average of the transverse displacement. The

displacement field in eqn (I) is substituted into eqn (2)
resulting in C = -_/5, and the expressions for two ui

coefficients in terms of the u(x) and O(x) variables. The

remaining two ui coefficients are determined by enforcing

zero shear traction conditions at the top and bottom beam

faces. Since, from Hooke's law (eqn (5)), the shear stress is

proportional to the shear strain, the shear strain at the top
and bottom faces must also vanish:

%,== (u,,_ + u=,,) _=_h=0 (3)

Enforcing the conditions in eqn (3) gives rise to the

displacement components of the form:

1 "_ I.,(., = u+ i¢o- - J)hw,,,- i¢('¢2 _

u:(x,z)=w+ _'w, + (_.2_ 1)w2, (4)

where

= .,#)] + .,_.ax)

Note that the resulting displacements in eqn (4) are in terms

of the same five kinematic variables as in Tessler's { 1,2}-

order theory, and the quadratic u. is the same for both
theories. The first three variables, u(x), 0(x), and w(x), are

the Reissner weighted-average displacements, defined in

eqn (2), whereas wj(x) and w__(x) represent the higher-

order terms that account for the stretching of the beam
through the thickness. The cubic u, has an hierarchical

form such that if the higher-order terms w_., and 3, are

eliminated, the displacement field is reduced to the { 1,2}-

order theory with a linear axial displacement distribution.

The displacements in eqn (4) represent the beam analog

of the {3,2}-order plate displacement approximations
explored by Tessler 17 in the context of a hierarchical

recovery of the {I,2} results using the {3,2}-order

displacement, strain, and stress expansions.

Stress-strain relations

Either plane strain or plane stress constitutive relations

can be developed for a laminated beam resulting in the
stress-strain relations in the form:

Or._

Og z

T I Z

01kC'13 _'33 0 e=: (5)

The complete derivation of eqn (5) can be found, for
example, in Cook 2t.

Strain-displacement relations

In this beam theory, two distinct approaches are used to

express the strains in terms of the kinematic variables. The

axial e,._ and transverse shear %= strains are determined

directly from the strain-displacement relations of elasticity

theory, where the 3'.< strain is further augmented with a
shear correction factor. The strains derived in this manner

will be represented by continuous and differentiable

polynomial functions through the thickness whose distribu-

tions are independent of the individual laminate properties;

hence the superscript (k) will be dropped for these strains.

Clearly, such strains can be regarded as some average
representations of the "true" strains (i.e., those strains that

satisfy the requisite equations of elasticity theory). The

derivation of the transverse normal strain e_ ), however,

begins with an average stress assumption for a=, which is

assumed to have a cubic polynomial distribution through the

thickness. These strain developments are summarized as
follows.

The axial, average strain e,., is obtained from the linear
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strain-displacement relations as

e,., = u ..... = _(_ + K,<)4h+ ell@ + KH03 (6)

where the strain measures, curvatures, and the thickness

distribution functions _b, are defined as

(_,,,,e,) = (,, ,,h,,,,,,)

(K,o, KH)=(O.,, ](W,, +O,)+W2,,, ), (7)

(0,, 02, 03) = (h_', 1/6- _'2/2, h(_/5 - _'3/3))

The transverse shear average strain is obtained from the

linear strain-displacement relations of elasticity and is

augmented with a shear correction factor k i.e.,

y._'" = kq,,.:= k(u,._ + u:.,) = kq,,.( 4,,_.
(8)

(%:o, q_.-) = (0 + w,, 5(1 - _2)/4)

The shear correction factor is introduced in eqn (8) in antici-

pation that for certain material systems and lay-ups, a
correction in the value of the transverse shear energy may

be necessary; the shear correction factor provides a simple
and effective mechanism for implementing such a

correction. The motivation for circumventing the determi-

nation of the transverse normal strain directly from the

strain-displacement relations is as follows. The strain-

displacement relations which employ the displacement

assumptions eqn (4) give rise to a continuous through the
thickness e:: strain which would represent only an average

distribution of this strain through the thickness. This in turn

would result in a az: which for laminated beams may exhibit

discontinuity along ply interfaces. However, according to

elasticity theory, a:: must be continuous through the thick-
ness and e(._! may be discontinuous along ply interfaces. The

approach introduced by Tessler I_' enables the derivation of

an improved el:_) that will be discontinuous at ply interfaces.

hnportantly, the desired simplicity of the theory is retained.

For mechanical loading, a:: is closely approximated by a

cubic expansion through the thickness as

3

o:: = _'. a:,,_" (9)
n = 0

in which the four a:,, coefficients need to be determined.

Two of the coefficients are found from the equilibrium

equation of elasticity theory, i.e.,

r,:,_ + o'::.: =0 10)

Since the transverse shear stress salisfies traction-free

boundary conditions on the top and bottom surfaces of the

beam, i.e. r,:(x, _+ h) = 0, the derivatives of the shear stress

r,:,., at the top and bottom faces must vanish. To satisfy the

equilibrium equation, the derivatives of the transverse
normal stress must also vanish on the top and bottom
surfaces:

o::.z(x, _+ h)=0 (11)

These exact equilibrium traction conditions reduce a:: to the
form

,7:: =,_:0 + o:_4,5, 05 = (/'- _3/3) (12)

The reJ naining two coefficients are found by forcing the el:_)....

strain :o be least-squares compatible with the corrected

averag : strain derived from the strain-displacement relation
(the n(tation e(:_ with the superscript (k) implies that the

strain is piece-wise (ply-level) continuous):

jh ( (k, 1,_i'_)2 dz (13)minimize h ,e:: -

where the corrected average strain is determined from the

strain-displacement relations as

u_i'ff = k-oe-o + 2k:j K:o01 , (e_), K:0) = (wj/h, w2/h 2) (14)

where t_:0and k:_ are the transverse normal correction fac-
tors, m d e:0 and K_)denote the transverse strain measure and

curvature, respectively. Obtaining el:_! from the constitutive

relatio:_s, eqn (5), results in

Introducing eqns (14) and (15) into eqn (13), where the

minim zation is performed with respect to the undetermined

coefficients, a_) and orb results in two algebraic equations
from _,hich these coefficients are readily determined. Eqn

(15) is then simplified to yield the transverse normal strain
of the form

.(k) _(k) _(k)

(16)
b , .L (k) t(k)

-t- _'zl _Z()_5 _'- KH_6

l/,(kl depend on the thickness coordinate, _', and thewhere -i
elastic stiffness coefficients, C(k),,,,.For their explicit form,

3' 1refer t.) Cook" .

In c mtrast to the linear distribution of u_i'5_ in eqn (14),
e(:_) ca _be discontinuous at the ply interfaces and is piece-

wise :ubic. As will be demonstrated by numerical

comparisons with exact elasticity solutions, this form of
e_:__enmres superior through-the-thickness predictions and

improves the overall beam response.

Variat onal principle

The principle of virtual work is employed to construct the
beam equilibrium equations and associated boundary

conditons. Neglecting body forces, the virtual work

princil,le can be stated as

r(_)6_ )

- Is *q+&':(x'h) ardy+ fs q 6uc(x,-h) dxdv

-F [A[T,o&t,(O,2.) q- TcOau:(O,,7)] dA

- IA[T_L6u._(L,z ) + T:L6t_z(L,z)] dA =0 (17)

where 6 is the variational operator, A is the cross-sectional
area o" the beam, and S + and S denote the top and bottom

surfac ;s of the beam, which, respectively, are subject to the

norma[ pressure loads q+ and q-. The first term in eqn (17)

is the ',olume integral representing the virtual work done by
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the stresses. The surface integrals denote the virtual work

done by the external surface tractions.

Introducing the beam displacement assumptions and

strain-displacement relations into eqn (17), then integrating

over the beam cross-section and performing integration by

parts results in the one-dimensional form of the virtual work

principle

I(I IN_, ,Su + ( Q., - M ..... -- _MH, ,)80

SM q, )8w + (N:/h {/2)_iWl+(_ H,.,.,--Q ..... - +hNe ..... -

-F (M:/h 2 -FMH,.v a -- 4ql)6W2] dA"

+ _ (1-2c_lL)([N,.-N,(cO]6u(_)
o_=0, L

+ IIVI,,_ -- M,(o<)l _0(o_) + [_I,_ - hUH(_)] _,VI,.):(G )

+ M.(o<)]
+ EIQ.,. - Q,.(c_)] 8w(oQ + [(_,,_ - hNB..,(o<)J6w,(G)

+ [(_2,, - MH..,(°<)] 6w2(o0) = 0 (18)

where the beam reactive and prescribed (superscribed with a

bar) stress resultants are defined as

+ aA

f rIk)rb dz, (M_,Mc,MH)Qx _ ,4 _2 12

A "k xx "PI ........

(0,,02)=b(q +-q ,q+ +q ),

N,_= fAZ._dz, /I)._= I,r_,_zdz,,

_/,_=h IAT._0zdz )1_/2_= [4Tx,_03dz,

0_-,_ = IA T:,_ dz, 0,_ = fa T.-,__"de,

02. = AT.__,(_"-- _)d_, (c_=0. L) (19)

Equilibrium equations and boundary conditions

The equilibrium equations and boundary conditions are

obtained from the principle of virtual work, eqn (18). The

expressions associated with the arbitrary kinematic varia-

tions must vanish independently, resulting in the following

equilibrium equations:

N,._--0, N:Ih+hNH ..... -02=0, ]MH.x.,--Q .......--01----0,

_ 5MQ._ - M,.,., _ H, x = O, M:/h 2 + MH,.,. 401 = 0. (20)

The remaining terms in eqn (18) must also vanish

independently, thus giving rise to the boundary conditions

for the theory. Evidently, either tractions or displacements

can be prescribed at x = 0 and L, such that

19.._ = N,(o0 or 8u(ot) = 0, .g/,_, =M,(ot) or 80(e_)=0,

1_11,_ = hNH(_ ) or 6wl., (e¢) = 0, _/2,_ = MH(o:) or 6y(o_) = 0,

0.,_, = Q,(o_) or 8w(c_) = 0, 01 _, = hNH,, (G) or 6i,t' 1 (od) = 0,

0--.2_=MH.,(cd or 6w2(_)=0, (ec=0, L). (21)

Beam constitutive relations

Introducing the strains eqns (6), (8) and (16) into the

stress-strain relations eqn (5), and integrating the stress

resultants eqn (19), yields the beam constitutive relations of

the form

• N,

N_

Nu

< M t

M_

MH

A_

k:_)A i 2

A_3

B;]

k:lBi2

o

'_t(}

'_H

Kr0

K:(I

KH

• T_:tl

k:oAl2 AI_ BII k:lBl2 BI3 0

k_)Az2 k:oA23 k:oB,_l k:okHBez k._)B,_3 0

k:0A2_ A_3 B_I kzlB_2 B33 0

k:0B__l B_I Dll k:)Dp_ DI3 0

k:lk:oBe2 k:lB32 k:lDi2 k2qD22 k:lD23 0

k:t)B23 B_ DI 3 k: I D23 D_ 0

0 0 0 0 0 k2G

(22)

where the A 0, B o, Dil and G coefficients represent the mem-

brane, membrane-bending coupling, bending, and shear

rigidities. For their explicit form, refer to Cook 2_.

Equilibrium equations in terms of di,wlacements

To facilitate a closed-form solution to the equilibrium eqn

(20), subject to the appropriate boundary conditions eqn
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(2 i ), it is convenient to express eqn (20) in terms of the five

kinematic variables of the theory. First, the strain measures
and curvatures can be expressed in terms of the kinematic
variables in matrix form as

' E.d)

E H

Kill

K:O

KH

, ")'leo

1
0 /i

c._20 h _-_

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 "_ 0
0.1

0 0

5 _'_2 5 i_ _J2

;-_ I 0

0

0 ' u

0 wl

W

0

• W2

(23)

Substituting eqns (22) and (23) into eqn (20), the equili-

brium equations in terms of the kinematic variables take
the form

k coA12
AllUl. ll + i_wi,l+ltAi3wi,m.+BiiOu

+

-1- __

E5 ]+ h_W:,, +8,_ _(O,.,,I+W,.,I,,)+W, ...... =0

(24)

k:oA 23
13ll'lll q" h WI ..... q- hA33Wl'4t q- B3t 0.......

5 w, 4,]}k:,e,2 +B,i_(Ol.,,+,,..41) +
h_W2, -, .

+
_{k._A |2/1. I _w, nt-hK.-oA23 w , ..... -}-kg)B2101

k._k.tB,, _ 0 w.i,) +w, ,,]}

(25)-q: =0

kcoB2___,5 BI3um+__ h v, 1.... +hB33wl.4,+D13 0....

k:l D23 }+ 2..... ......

- k2G(O., + W l.I) -- _/l = 0 (26)

k-oB_l
BI Iu ..... + "h - w l' _+ hB3t Wl...... -It-D110 ....

kclDt2
+ --h,7--,,',_,, +D,.,[_(O,.I +'"..Ill)+ '":..,ll']

k..B,_ uq_ 5 BI31L, I._ __ _ 'l,i-{- hB33wI,x,v q- DI30, ll-

k'lD'_ }+ _'"_', l+D33[_(0_.,+"',.,)+"'2.._.1.,-]

- k2G(O + w..,) = 0 (27)

kcoB23
Bi3 t....... + --t_-w] .... + hB33wl.4x + Di30 x......

k. D_ s
"_"',',. .....+ D33[_(O.l.l, + ".4.1) +'":.4.,1

1 { kctkzoB22wl + k:thB32vq .....-- _2 k:lBt2u, l + h

kzt kzoD22
-- k:lDi20.. I + h2 w2

50 +w2,,.,]} 4---kqD23[_( ..i + w _.l) - =0 (28)

where v a, : w,l.u.

Similarly, the boundary conditions eqn (21) can also be

readily expressed in terms of the five kinematic variables if

necessary. Eqns (24)-(28), subject to the boundary con-

ditions eqn (21), can then be solved simultaneously to

determne the five kinematic variables and subsequent

displacement, strain, and stress distributions in the beam.

Reduction to lower-order theories

The fierarchical displacement approximation of the {3,2 }

order t _eory permits a straightforward reduction to several

lower-order theories. By eliminating the higher-order

displacement terms WL._(x) and _(x) from eqn (4), the

displacement field reduces to the {1,2} form given by
TessleflS:

u,.(x, ::.)= u + hrO, uz(x, z) = w + rw, + (f - _)w 2 (29)

Conse¢uently, the higher-order strain and curvature terms
eH and KHare eliminated from the theory. This results in the

simplif cation of the equilibrium equations, boundary con-

ditions and stress resultants, respectively, such that all of

the terms with a subscript H are eliminated.

The { 1,2} displacement theory can further be reduced to

Timosl enko theory by neglecting the Poisson effect (i.e., by

setting u_3 = 0), thus ignoring the coupling between the
axial aad transverse stretching of the beam. Furthermore,

the we ghting function associated with the computation of

the trar sverse shear stiffness, which is parabolic, needs to be

set to unity to simulate the constant shear distribution

accord!ng to Timoshenko theory. While this yields the
Timostenko theory equilibrium equations, the boundary

conditi ms lbr both {1,2}-order and Timoshenko theories

are the same. The results of Timoshenko theory can further

be redt ced to those of classical beam theory by setting the

transverse shear rigidity to be infinite, i.e., G = _.

CYLIb DRICAL BENDING PROBLEM

The pr _blem of cylindrical bending is considered for the

beam n a state of plane-strain. The beam is simply-

suppored at the ends x = 0 and x = L and is subjected to a

transverse load in the form of a half-sine wave applied at the

top sur'ace, i.e.,

q+ (x) = % sinOrx/L), q (x) = 0 (30)

where l,, is the amplitude of the loading.
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A closed-form solution is derived by first assuming

appropriate trigonometric distributions of the kinematic
variables

u = U cosOrx/L), 0 = (")cosOrx/L),

w = W sin(_rx/L), wl = W_ sin(Trx/L), w2 = W2 sin(Trx/L)

(31)

which satisfy the simply-supported end conditions exactly:

At x = 0 : N,(0) = M,(0) = N,(0) = MH(0)

= w(O) = wj (0) = w2(O) = 0

At x = L : N, (L) = M, (L) = Nn (L) = Mt4(L)
(32)

= w(L) = w I(L) = w2(L ) = 0

Introducing eqns (30) and (31) into the equilibrium eqns

(24)-(28) results in five algebraic equations in which the
trigonometric functions are factored out, leaving only the

amplitudes U, ®, W, Wi, and W2 as unknowns. Once

the displacement amplitudes are determined, the kinematic

variables are completely defined, giving rise to the strain

measures and curvatures. The displacements, strains and

stresses are then computed in a straightforward manner

and are subsequently compared with the corresponding
exact elasticity solutions, e.g., refer to Pagano z2 and
Burton and Noor 23.

Since, in composite and sandwich laminates, the actual

shear strain distribution is generally discontinuous at the ply

interfaces and the shear stress is only piecewise continuous,

the two-dimensional equilibrium equation of elasticity

theory needs to be integrated to obtain an improved

approximation for the transverse shear stress. This well-
established procedure has been modified by Cook 21 to

ensure accurate shear stress computations for unsymmetric

and sandwich laminates--the type of laminates for which

the integration approach results in rather inaccurate shear
stresses.

Numerical results

Cook 2_ assessed the {3,2}-order theory by examining a

wide range of laminates and material systems. As expected,

the best performance is achieved for homogeneous beams,

where the displacement, strains and stresses, both due to the

{3,2} and { 1,2} theories, correlate exceptionally well

with exact elasticity solutions even for the thick beams

with L/2h = 4. For homogeneous beams, all correction
factors take on the value of unity (k 2 = k._ = k: = 1.0), i.e.

no corrections are required.

Presently, the numerical assessment is focused on the

material systems and aspect ratios which expose the highest

degree of modeling difficulty for the theory. In particular,

the results for two types of moderately thick and thick

composite beams (L/2h = 10 and 4) are presented: (a)

graphite/epoxy (GR/EP) unsymmetric laminated beams

with a lay-up of [04/904/04/904]T and (b) GR/EP, PVC-

core symmetric sandwich beams with a lay-up of [04]902/0 4]

902/0ffPVC Core]s. The material properties and geometric
data are summarized in Table 1. and the transverse shear and

transverse normal correction factors are given in Table 2.
For details on the determination of the correction factors,
the reader is referred to Cook 21.

lxtminated composite beams

In Figures 2 and 3, the displacement, strain, and

stress through-thickness distributions for the moderately

thick (L/2h ----10) and thick (L/2h = 4) unsymmetric, GR/EP

laminated beams [Off9Oa/Off904}T are shown. For compari-

son purposes, the { 1,2 }-theory results are included for the

thick case only where the differences in results are most

pronounced. Due to the lack of symmetry in the lay-up, the
midplane is in tension with respect to the e,, strain and is

under a compressive e:_ strain. The transverse displacement

is non-linear through the thickness, and is within 0.1% of the
exact solution for the L/2h = 10 case and within 2% for the

L/2h = 4 beam. The exact o-. stress is seen to be more

complex through the thickness than its cubic approximation
within the present (and {1,21) theory. Nonetheless, the

qualitative comparison is quite adequate. Also, the cubic

distribution of the axial strain, e,,, is quite accurate,

underestimating the maximum value only slightly lbr L/
2h = 10. For L/2h = 4, however, the results are significantly

less accurate, with the present theory results being

consistently superior to the {I,2} theory results. As

Table I Material properties and lamina geometric data

Graphite/Epoxy (GR/EP) E/= 22.9 Msi vtj= 0.32
Ej = 1,39 Msi vn= 0.49

Polyvinyl chloride (PVC) E = 15.08 ksi v = 0.3
Ply thickness 0.00625 in
Beam width 1.0 in

Sandwich core thickness 0.8 × Total lhickness

Notation: L = Longitudinal direction, T = Transverse direction

Table 2 {3,21 and { 1,21 theory correction factors

Material system k _- k :o k :l

13,2} 11,21 13,21 {I,21 {3,21

GR/EP laminate (I.76187 0.73262 1.21668 1.0 1.01975

GR/EP-PVC sandwich 0.30666 0.37301 1.24326 1.24326 1.59569

G/i = (/.86 Msi

Gn = 0.468 Msi
G = 5.80 ksi

{I,21

1.0

1.76405
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expected, the results are in excellent agreement with the
exact solutions for the moderately thick beam and are
somewhat less accurate for the thick beam.

Sandwich beams

Sandwich laminates present a unique challenge to any

approximate bending theory owing to the drastic change in

the material properties through the thickness. The lace

sheets _f a sandwich are stiff while the core material is

lightw(ight and, generally, is several orders of magnitude
more c _mpliant.

Figl_res 4 and 5 show the displacement, strain and

stress variations, through-thickness, for the moderately

thick (i,/2h = 10) and thick (L/2h = 4) symmetric sandwich

beams. Characteristically for a sandwich laminate, the axial

stress (_x is carried by the stiff GR/EP face sheets whereas

the tra]Lsverse shear stress 7_ is almost exclusively carried
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by the PVC core. Note that for the moderately thick beam,

the deflection is over estimated by about 2%. For the thick
beam, the {3,2 }- and { 1,2 }-order theories over estimate the

deflection by 12% and 37%, respectively. Such large

discrepancies could have been avoided by way of correction

factors appropriate for the thick regime. The axial

displacement and strain have a pronounced zigzag distribu-

tion through the thickness according to the exact solution.

For these quantities, the cubic variations of the {3,2 }-order

theory predict the response adequately in the face sheets and

at the midplane. Consequently, the stresses and strains on

the top and bottom faces, where these quantities are usually
the largest, are accurately predicted by the theory• Notice

that the linear approximation for the axial displacement in

the { 1,2} theory underestimates the axial strain, resulting in

a significant underestimation of the axial stress. The {3,2 }-

order theory captures _** at the top and bottom surfaces

adequately, while the same stress for the {1,2} theory is
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85% in error. The quality of these results suggests that the

span to thickness ratio of L/2h = 4 may constitute the

practical limit for application of this theory to sandwich
beams.

CONCLUSIONS

A {3,2 }-order bending theory for laminated composite and

sandw ch beams has been developed. The theory employs a

hierar¢hical form of a third-order axial displacement and a

quadratic transverse normal displacement, and possesses the

same finematic variables as the {l,2}-order theory. The

assum,'d kinematic field results in an average parabolic

shear _,train such that zero shear-stress boundary conditions
on the top and bottom beam surfaces are fulfilled exactly.

An inc_ependent expansion for the transverse normal stress

is also introduced, thus enabling accurate transverse normal
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strain and stress predictions. Appropriate transverse shear

and transverse normal correction factors are used to adjust

the shear and thickness-stretch response of the beam. A

closed-form solution to the cylindrical bending of moder-

ately thick and thick unsymmetric laminated composite and

symmetric sandwich beams has been developed. The

numerical results show that the {3,2}-order theory has

some advantages over the { 1,2 }-order theory, particularly in

predicting the axial response in thick sandwich laminates.
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